
DN001 Silicon Gorge Systems Ltd.

Interfacing Agilent Logic Analysers to MATLAB

 Marcus Valentine

DN001 (08/06) © Silicon Gorge Systems Ltd, Registered in England, Number 5201650. Issue 0.2

1 Introduction

This application notes serves as an introduction on how to interface the Agilent 168x/8xx/9x/9xx and
16700 series Logic Analyzers to MATLAB, using Microsoft COM (Component Object Model)
automation. Familiarity is assumed with the Agilent’s Logic Analyzer application; the concept of COM1
and Mathwork’s MATLAB.

The resulting MATLAB - Logic Analyzer system provides a powerful and versatile framework suitable
for proof of concept and design verification of complex signal processing systems incorporating real
digital hardware, in diverse applications such as wireless communications and medical.

2 Interfacing to 168x/9x/9xx series Logic Analyzers

The Agilent Logic Analyzer application includes the COM Automation Server which lets you write
programs that control the Agilent Logic Analyzer application from remote computers on the Local Area
Network (LAN). Agilent’s COM Automation Help documentation contains programming examples for
Visual Basic, Visual C++, Labview, Perl, Python and Tcl, but not, unfortunately, for MATLAB. The
Visual Basic for Applications (VBA) examples and reference provide a good starting point to transform
the VB code examples into MATLAB.

The Logic Analyzer application can be run on either the Logic Analyzer hardware, or the PC running
the Matlab application2. It is recommended that the Logic Analyzer application be run on the PC
running Matlab, as this removes the necessity of requiring a license for the Agilent Advanced
Customization Environment3 package. The technique described here does not require the Agilent
MATLAB Connectivity and Analysis Package as this package requires the Advanced Customization
Environment.

2.1 Connecting to the Logic Analyzer Application
In Visual Basic, we have:
Dim myConnect As AgtLA.Connect
Dim myInst As AgtLA.Instrument
Set myConnect = CreateObject("AgtLA.Connect")
Set myInst = myConnect.Instrument("localhost")

In MATLAB, connect to the local Logic Analyzer application thusly:
>> AGILENT_LA_SERVER_PROGID = 'AgtLAServer.Instrument.1';
>> logic_anal = actxserver(AGILENT_LA_SERVER_PROGID);

This creates a COM server, and returns the COM object logic_anal representing the interface to the
COM server. Inspect the properties of the object using the MATLAB get function:
>> get(logic_anal)
 Status: 'Stopped'
 Modules: [1x1 Interface.{91F3E657-040B-4499-9047-3461107FFD3F}.IModules]
 Tools: [1x1 Interface.{91F3E657-040B-4499-9047-3461107FFD3F}.ITools]
 Windows: [1x1 Interface.{91F3E657-040B-4499-9047-3461107FFD3F}.IWindows]

1 See http://www.microsoft.com/com/
2 Another possibility is to run Matlab on the Logic Analyzer hardware.
3 Search agilent.com for B4606A.

Interfacing Agilent Logic Analysers to MATLAB
DN001 v0.3

DN001 (08/06) © Silicon Gorge Systems Ltd. Issue 0.3
 http://www.silicongorgesystems.co.uk Page 2 of 5

Silicon Gorge Systems Ltd

 ...

Display the methods available on the interface using the MATLAB invoke function:
>> invoke(logic_anal)
 Close = void Close(handle, Variant(Optional))
 CopyDataToFile = void CopyDataToFile(handle, string, SafeArray(char),
Variant(Optional))
 DeleteFile = void DeleteFile(handle, string)
 ...

Retrieve the version of the Logic Analyzer application:
>> version_str = logic_anal.Version

version_str =

03.30.0002

2.2 Connecting the Logic Analyzer Application to the Logic Analyzer Hardware
We now have a connection between MATLAB and the Logic Analyzer application, but don’t necessarily
have a connection between the Logic Analyzer application and the Logic Analyzer hardware. First test
for the connection using the IsOnline method:
>> [online_f status_str] = logic_anal.IsOnline

online_f =

 0

Make the connection using the GoOnline method:
>> LOGIC_ANAL_IP_ADDR = '192.168.1.99';
>> logic_anal.GoOnline(LOGIC_ANAL_IP_ADDR);

Test for online status once more:

>> [online_f status_str] = logic_anal.IsOnline

online_f =

 1

status_str =

192.168.1.99

Note that status_str has been set to the frame’s name (as defined by the ComputerName property).

2.3 Creating additional handles
Create a handle to the modules object. This returns a collection of all the enabled hardware modules in
the instrument.
>> modules = get(logic_anal, 'Modules')

modules =

 Interface.{91F3E657-040B-4499-9047-3461107FFD3F}.IModules

Interfacing Agilent Logic Analysers to MATLAB
DN001 v0.3

DN001 (08/06) © Silicon Gorge Systems Ltd. Issue 0.3
 http://www.silicongorgesystems.co.uk Page 3 of 5

Silicon Gorge Systems Ltd

Retrieve the number of enabled hardware modules in the Logic Analyzer hardware by using the Count
property:
>> num_of_modules = get(modules, 'Count')

num_of_modules =

 3

Use the Item property to get one of the objects in the collection either by index or name. This fails:
>> get(modules, 'Item', 1)
??? Invoke Error, Dispatch Exception:

Description: Invalid argument type. Must be either an integer or string.

as the method is expecting the Item number to be of VB type long. A MATLAB double doesn’t work,
but an int16 does. This is not obvious from the Agilent documentation, so some experimentation may
be required.

This succeeds:
>> get(modules, 'Item', int16(1))

ans =

 Interface.{91F3E657-040B-4499-9047-3461107FFD3F}.IPattgenModule

2.4 Inspecting all the modules
This code fragment uses more properties to gather information on all of the enabled hardware
modules:
for idx = 1:num_of_modules
 % Logic Analyzer modules start counting from zero, MATLAB counts from 1.
 module{idx} = get(modules, 'Item', int16(idx - 1));
 fprintf('%s\n', ['Slot ' , get(module{idx}, 'Slot'), ...
 ' Module: ', get(module{idx}, 'Type'), ...
 ', model number ', get(module{idx}, 'Model'), ...
 ', name ', get(module{idx}, 'Name'), ...
 ', status ', get(module{idx}, 'Status')]);
end

Slot A Module: Analyzer, model number 16911A, name My 16911A-1, status Stopped
Slot B Module: Pattgen, model number 16720A, name My 16720A-1, status Stopped
Slot C Module: Pattgen, model number 16720A, name My 16720A-2, status Stopped

2.5 Retrieving data from the Logic Analyzer module
Create a handle to the Logic Analyzer module, this time by Name rather than by Index, using the
name discovered in the above code fragment.
>> My16911A = get(modules, 'Item', 'My 16911A-1')

My16911A =

 Interface.{91F3E657-040B-4499-9047-3461107FFD3F}.IAnalyzerModule

Interfacing Agilent Logic Analysers to MATLAB
DN001 v0.3

DN001 (08/06) © Silicon Gorge Systems Ltd. Issue 0.3
 http://www.silicongorgesystems.co.uk Page 4 of 5

Silicon Gorge Systems Ltd

Retrieving data from the Logic Analyzer module requires knowledge of the Bus/Signal set-up. Whilst
the Bus/Signal set-up could be programmed over the interface, life can be made easier by instructing
the hardware to load a previously saved Logic Analyzer configuration file, using the Open method. In
this example, a preloaded configuration file has defined a Bus/Signal called ‘Ch A’.

Create a handle to the ‘Ch A’ Bus/Signal object:
>> ChA = get(My16911A.BusSignals, 'Item', 'Ch A')

ChA =

 Interface.{91F3E657-040B-4499-9047-3461107FFD3F}.IBusSignal

Run the Logic Analyzer using the Run method. Use of WaitComplete is recommended to avoid
waiting until the end of time in the event of the trigger criteria not being met. In this example a timeout
period of ten seconds is used.
logic_anal.Run
logic_anal.WaitComplete(int32(10))

See how much data we have:
>> CH_A_first_sample = ChA.BusSignalData.StartSample

CH_A_first_sample =

 -32768

>> CH_A_end_sample = ChA.BusSignalData.EndSample

CH_A_end_sample =

 32767

Choose a DataType to return the data. In this example we will use AgtDataLong, which holds a
maximum of 31 bits unsigned.
>> AGT_DATA_TYPE = 3;

Retrieve the data using the GetDataBySample method: In VB, an example call looks like:
Dim lArray() As Long
 lArray = _
 myData.GetDataBySample(myStartSample, myEndSample, AgtDataLong, myNumDataRows)

where the data is returned in lArray, and the number of results returned is in myNumDataRows.

In MATLAB, we need to move the assignment of the number of results to the left hand side:
[ChAData num_results] = ...
 ChA.BusSignalData.GetDataBySample(CH_A_first_sample, CH_A_end_sample, ...
 AGT_DATA_TYPE);

Generalising, in any VB code example where arguments are returned on the right hand side of the
argument, these arguments need to be moved to the left hand side of the MATLAB assignment
operator.

Interfacing Agilent Logic Analysers to MATLAB
DN001 v0.3

DN001 (08/06) © Silicon Gorge Systems Ltd. Issue 0.3
 http://www.silicongorgesystems.co.uk Page 5 of 5

Silicon Gorge Systems Ltd

2.6 Interfacing to a Pattern Generator module
Interfacing to the pattern generator follows a similar strategy, creating a handle to the pattern
generator, allowing access to objects further down the hierarchy. It is possible to use MATLAB to
create Agilent PGB (Pattern Generator Binary) files on-the-fly. MATLAB can then instruct the pattern
generator to load and play the PGB file.

2.7 Tidying up
When finished, it is good practice to clear handles from memory:
>> delete(logic_anal)

3 Interfacing to 16700 series Logic Analyzers

For the 16700 series logic analyzers, the COM automation server is included in the Agilent IntuiLink
16700 software. The PROGID for the Version 2 server is:
>> AGILENT_LA_SERVER_PROGID = 'Agt16700Ver2.Instrument';

Generally, interfacing follows the strategy outlined above; with the proviso many of the methods and
properties have subtly different names. Refer to the documentation provided with the Intuilink software
for details.

4 Coding Advice

When writing interfacing code, the following advice is offered:

• Investigate on the MATLAB command line, using MATLAB’s get and invoke functions on new
objects as they are created;

• Monitor what’s happening by observing the Logic Analyzer application as commands are issued
in MATLAB (a dual monitor set-up is recommended);

• Be wary of the types of both the arguments and returned data of function calls;

• Be wary of number of returned arguments – returned arguments may need moving to the left-
hand side of the MATLAB assignment.

• Don’t be afraid to experiment. You won’t break anything4

5 Acknowledgements

The author wishes to thank Piers Glydon of Imperial Software, and Guy McBride of Agilent
Technologies.

All trademarks are acknowledged

4 The author absolves himself of all responsibility should any advice given in this document should, in fact, break

something.

